Search results for "strongly correlated Fermi systems"

showing 2 items of 2 documents

Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite

2018

We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transiti…

Quantum phase transitionPhase transitionFOS: Physical sciencesOptical conductivityQuantum phase transitionengineering.material01 natural sciencesOptical conductivity010305 fluids & plasmasQuantum spin liquidsCondensed Matter - Strongly Correlated ElectronsNon-Fermi-liquid states0103 physical sciencesGeneral Materials ScienceStrongly correlated Fermi systems010306 general physicsPhysicsCondensed Matter::Quantum GasesFlat bandsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsFermionCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSpinonengineeringState of matterHerbertsmithiteCondensed Matter::Strongly Correlated ElectronsQuantum spin liquidJournal of Low Temperature Physics
researchProduct

Flat bands and strongly correlated Fermi systems

2019

Many strongly correlated Fermi systems including heavy-fermion (HF) metals and high-Tc superconductors belong to that class of quantum many-body systems for which Landau Fermiliquid (LFL) theory fails. Instead, these systems exhibit non-Fermi-liquid properties that arise from violation of time-reversal (T) and particle-hole (C) invariance. Measurements of tunneling conductance provide a powerful experimental tool for detecting violations of these basic symmetries inherent to LFLs, which guarantee that the measured differential conductivity dI/dV, where I is the current and V the bias voltage, is a symmetric function of V. Thus, it has been predicted that the conductivity becomes asymmetric …

flat bandsPhysicstunneling conductanceTunneling conductancestrongly correlated Fermi systemsCondensed matter physicsCondensed Matter PhysicsMathematical PhysicsAtomic and Molecular Physics and OpticsFermi Gamma-ray Space TelescopePhysica Scripta
researchProduct